Generalized Cauchy Process: Difference Iterative Forecasting Model

نویسندگان

چکیده

The contribution of this article is mainly to develop a new stochastic sequence forecasting model, which also called the difference iterative model based on Generalized Cauchy (GC) process. GC process Long-Range Dependent (LRD) described by two independent parameters: Hurst parameter H and fractal dimension D. Compared with fractional Brownian motion (fBm) linear relationship between D, can more flexibly describe various LRD processes. Before building demonstrates using D properties sequences, respectively. taken as diffusion term establish differential where incremental distribution obtained statistics. parameters are estimated box dimension, rescaled range, maximum likelihood methods. Finally, real wind speed data set used verify performance model.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Cauchy Difference Equations. Ii

The main result is an improvement of previous results on the equation f(x) + f(y)− f(x+ y) = g[φ(x) + φ(y)− φ(x+ y)] for a given function φ. We find its general solution assuming only continuous differentiability and local nonlinearity of φ. We also provide new results about the more general equation f(x) + f(y)− f(x+ y) = g(H(x, y)) for a given function H. Previous uniqueness results required ...

متن کامل

mortality forecasting based on lee-carter model

over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...

15 صفحه اول

A Two-parameter Generalized Skew-Cauchy Distribution

In this paper, we discuss a new generalization of univariate skew-Cauchy distribution with two parameters, we denoted this by GSC(&lambda1, &lambda2), that it has more flexible than the skew-Cauchy distribution (denoted by SC(&lambda)), introduced by Behboodian et al. (2006). Furthermore, we establish some useful properties of this distribution and by two numerical example, show that GSC(&lambd...

متن کامل

Generalized Cauchy Identities

We present an analogue of the differential calculus in which the role of polynomials is played by certain ordered sets and trees. Our combinatorial calculus has all nice features of the usual calculus and has an advantage that the elements of the considered ordered sets might carry some additional information. In this way an analytic proof of generalized Cauchy identities from the previous work...

متن کامل

Generalized Cauchy Determinants

This paper classifies the sequences that satisfy a generalization of the Cauchy determinant formula. They are the generalized Fibonacci numbers, up to a scalar multiple. Following this, it is determined which of these sequences generate Hankel matrices of unit fractions with integer inverses. As a corollary we obtain another proof that the Filbert Matrix has an inverse with integer entries, com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fractal and fractional

سال: 2021

ISSN: ['2504-3110']

DOI: https://doi.org/10.3390/fractalfract5020038